

#### The Digital Commons: Tragedy or Opportunity? The Effect of Crowdsourced Digital Goods on Economic Growth

Frank Nagle Marshall School of Business University of Southern California ARNIC 10/13/16



- The Tragedy of the Commons (Hardin, 1968) overuse of a public good
  - Digital goods are non-rival and essentially infinitely abundant
- The Tragedy of the Digital Commons free crowdsourced digital goods destroy existing business models, without replacing them in an economically measurable way
  - E.g., the encyclopedia industry
  - Creative destruction (Schumpeter, 1942), but the destructive impact is more easily measured than the creative impact

The Opportunity of the Digital Commons

- May not contribute to economic value directly, but contribute to productivity and general quality of life
- Knowledge repositories
- User review sites
- Open source software (OSS)



Three papers that examine the contribution of OSS to the economy and firm production



- Digital Dark Matter Digital goods that are nonpecuniary and effectively limitless
  - Important inputs into production
  - Systematically undercounted in productivity measures
- Open Source Software (OSS) is an example of Digital Dark Matter that is widely used throughout the economy
  - Others include Wikipedia, Yelp, YouTube, digitized 3D blueprints, and many more
- The Apache Web Server is an important example of this phenomenon – non-pecuniary, widely used, originally government funded R&D

# USC

# Measuring Digital Dark Matter and Apache

- Scanned 1% of the 1.5 billion IPv4 addresses in the US
  - Found ~200,000 web servers, 23% were running Apache
  - This leads to an estimate of ~4 million Apache servers in the US

## USC

# Measuring Digital Dark Matter and Apache

- Follow Nordhaus (2006) and impute the price of Apache based on a comparable market good – Microsoft IIS
  - Value of Apache is between \$2 billion and \$12 billion
  - Equivalent of 1.3% to 8.7% of the value of all prepackaged software investments
  - Represents a 17% to 19% rate of return, if Apache was the only good to come out of all of the US government's NSF investment in super-computing centers from 1985-1995

#### Paper 2 – OSS and Firm Productivity



What is the impact of crowdsourced digital goods on firm-level productivity?



#### **Related Literature**

#### **User Innovation**

- Important topic in management as early as von Hippel (1986)
- OSS is a frequently studied phenomenon within this literature
- Lerner and Tirole, 2002; Lakhani and von Hippel, 2003; von Hippel and von Krogh, 2003; West and Lakhani, 2008; Lerner and Schankerman, 2010; Casadesus-Masanell and Llanes, 2011; many others
- Predominately focused on the supply side, not the productivity of usage

#### Productivity of IT

- IT investment contributes to both firm and national growth
- Brynjolfsson and Hitt, 1996; Jorgenson, Ho, and Stiroh, 2005; Syverson, 2011; Tambe, Hitt, and Brynjolfsson, 2011; Huang, Ceccagnoli, Forman, and Wu, 2013; many others
- IT is measured via expense on IT HW, SW, or labor, which does not account for IT without a price

# USC

#### Institutional Context – OSS Operating Systems





- GNU Project and Free Software Foundation established in mid-1980's
  - First effort to create a free and open operating system and related software
- Linux Kernel created in 1991 and added to GNU
  - Many, many flavors of Linux built on top of the kernel
  - Linux is developed and maintained by a community of mostly unpaid contributors
- Many pecuniary systems are built on non-pecuniary
   9 OSS (e.g., RedHat Linux, IBM HTTP Server)



### **Risks of Non-Pecuniary OSS**

- Using non-pecuniary OSS can be risky:
  - No guaranteed technical support (Woods and Guliani, 2005)
  - No guaranteed technical path (Kogut and Metiu, 2001)
  - Security concerns (despite Linus's Law)
  - No contractual relationship (no one to sue)
- Free software is not truly free
  - Costs of software are < 10% of total cost of implementing software (MacCormack, 2003; Varian and Shapiro, 2003)
  - Long-term costs of open-source software are 5% to 20% higher than proprietary closed source (Giera and Brown, 2004)
- "No one ever got fired for buying Microsoft."



- Joy's Law: "No matter who you are, most of the smartest people work for someone else." Bill Joy, co-founder Sun Microsystems
  - Knowledge is distributed throughout society and cannot be fully aggregated in one central body (von Hayek, 1945)
  - The Linux kernel has 10,000 contributors
  - The Windows 8 kernel had one team of < 40 people (Sinofsky, 2011)</p>
- Up-front cost savings
- Flexibility to alter and enhance code (Schwarz and Takhteyev, 2011)



- Firm-level observations for 1566 public firms
   from 2000-2009
- Technology usage (Harte Hanks IT Survey)
  - Site-level survey of technology usage and employment
  - Includes information on desktop and server operating system usage, including free and paid OSS
- Financial performance (Compustat)



- VA<sub>it</sub> = productive value-added output of firm *i* at time *t*
- $ITK_{it} = IT$  capital stock
- $ITL_{it} = IT labor$
- $K_{it}$  = non-IT capital stock
- $L_{it} = \text{non-IT labor}$
- Operating Systems: Count of the number of computers running a give type of OS



Cobb-Douglas production function including IT

$$VA_{it} = K^{\alpha}_{it} L^{\beta}_{it} I T^{\gamma}_{it} A_{it}$$

 $\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma \ln IT_{it} + \varepsilon_{it}$ 

 $\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma_1 \ln ITK_{it} + \gamma_2 \ln ITL_{it} + \varepsilon_{it}$ 

 $\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma_1 \ln ITK_{it} + \gamma_2 \ln ITL_{it} + \gamma_3 \ln OSS_{it} + \varepsilon_{it}$ 

#### **Continuous Adoption of Non-Pecuniary OSS**

| 1         | 2                                                                                                                                                                  | 3                                                                                                                                                                                                               | 4                                                     | 5                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| OLS       | OLS –                                                                                                                                                              | OLS FE                                                                                                                                                                                                          | ABOND                                                 | BBOND                                                 |
|           | NAICS5                                                                                                                                                             |                                                                                                                                                                                                                 |                                                       |                                                       |
|           |                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                       |                                                       |
| 0.054***  | 0.040***                                                                                                                                                           | 0.026***                                                                                                                                                                                                        | 0.023***                                              | 0.023***                                              |
| (0.008)   | (0.007)                                                                                                                                                            | (0.006)                                                                                                                                                                                                         | (0.005)                                               | (0.005)                                               |
| 0.260***  | 0.226***                                                                                                                                                           | 0.060                                                                                                                                                                                                           | -0.154                                                | -0.080                                                |
| (0.014)   | (0.019)                                                                                                                                                            | (0.049)                                                                                                                                                                                                         | (0.102)                                               | (0.095)                                               |
| 0.725***  | 0.768***                                                                                                                                                           | 0.790***                                                                                                                                                                                                        | 0.698***                                              | 0.680***                                              |
| (0.017)   | (0.022)                                                                                                                                                            | (0.040)                                                                                                                                                                                                         | (0.054)                                               | (0.051)                                               |
| -0.004*** | -0.001                                                                                                                                                             | -0.001                                                                                                                                                                                                          | -0.000                                                | -0.000                                                |
| (0.001)   | (0.001)                                                                                                                                                            | (0.001)                                                                                                                                                                                                         | (0.001)                                               | (0.001)                                               |
| 0.131     | 0.291***                                                                                                                                                           | 1.114***                                                                                                                                                                                                        | 0.019                                                 | -0.273                                                |
| (0.197)   | (0.063)                                                                                                                                                            | (0.260)                                                                                                                                                                                                         | (0.680)                                               | (0.616)                                               |
| Y         | Y                                                                                                                                                                  | Y                                                                                                                                                                                                               | Y                                                     | Y                                                     |
| NAICS2    | NAICS5                                                                                                                                                             | -                                                                                                                                                                                                               | NAICS2                                                | NAICS2                                                |
| 10355     | 10355                                                                                                                                                              | 10355                                                                                                                                                                                                           | 7650                                                  | 8988                                                  |
|           |                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                       |                                                       |
| 1566      | 1566                                                                                                                                                               | 1566                                                                                                                                                                                                            | 1424                                                  | 1501                                                  |
| 0.930     | 0.952                                                                                                                                                              | 0.444                                                                                                                                                                                                           |                                                       |                                                       |
|           | 1<br>OLS<br>0.054***<br>(0.008)<br>0.260***<br>(0.014)<br>0.725***<br>(0.017)<br>-0.004***<br>(0.001)<br>0.131<br>(0.197)<br>Y<br>NAICS2<br>10355<br>1566<br>0.930 | 12OLSOLS -<br>NAICS50.054***0.040***0.008)(0.007)0.260***0.226***(0.014)(0.019)0.725***0.768***(0.017)(0.022)-0.004***-0.001(0.017)(0.001)0.1310.291***(0.197)(0.063)YYNAICS2NAICS51035510355156615660.9300.952 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

USC

## Adoption of NP OSS by IT-Producers

USC

| DV: Value-Added ( $VA_{it}$ )                 | 1                  | 2                 | 3                      | 4                                    | 5                                    |
|-----------------------------------------------|--------------------|-------------------|------------------------|--------------------------------------|--------------------------------------|
| Model                                         | OLS                | ABOND             | BBOND                  | ABOND                                | ABOND                                |
|                                               |                    |                   |                        |                                      |                                      |
| IT Capital $(IT_{it})$                        | 0.053***           | 0.022***          | 0.022***               | 0.031**                              | 0.031**                              |
|                                               | (0.008)            | (0.005)           | (0.005)                | (0.014)                              | (0.013)                              |
| Non-IT Capital $(K_{it})$                     | 0.259***           | -0.157            | -0.087                 | -0.242                               | -0.248                               |
|                                               | (0.014)            | (0.102)           | (0.095)                | (0.182)                              | (0.181)                              |
| Non-IT Labor $(L_{it})$                       | 0.724***           | 0.698***          | 0.681***               | 0.806***                             | 0.812***                             |
|                                               | (0.017)            | (0.054)           | (0.052)                | (0.163)                              | (0.161)                              |
| non_pecuniary_OSS <sub>it</sub>               | -0.006***          | -0.001            | -0.001                 | 0.004**                              | 0.005***                             |
|                                               | (0.001)            | (0.001)           | (0.001)                | (0.002)                              | (0.002)                              |
| non_pecuniary_OSS <sub>it</sub> x IT-producer | 0.016***           | 0.004**           | 0.005**                |                                      |                                      |
|                                               | (0.002)            | (0.002)           | (0.002)                |                                      |                                      |
| non_poouniary_OCC <sub>l,l=1</sub>            |                    |                   |                        |                                      | 0.003*                               |
|                                               |                    |                   |                        |                                      | (0.002)                              |
| $non_pecuniary_OSS_{i,t-2}$                   |                    |                   |                        |                                      |                                      |
| $non_pecuniary_OSS_{i,t-3}$                   |                    |                   |                        |                                      |                                      |
| Constant                                      | 0.132              | -0.022            | -0.305                 | 0.664                                | 0.417                                |
|                                               | (0.195)            | (0.685)           | (0.619)                | (1.106)                              | (1.102)                              |
| Year FE?                                      | Y                  | Y                 | Y                      | Y                                    | Y                                    |
| Industry FE                                   | V                  | NAICS2            | NAICS2                 | NAICS2                               | NAICS2                               |
| maabary 12                                    | 1                  | NAIC52            | 1011002                | 1111002                              | 101002                               |
| Sample Restriction                            | -                  | -                 | -                      | IT-Producing<br>Firms                | IT-Producing<br>Firms                |
| Sample Restriction<br># obs                   | - 10355            | -<br>7650         | - 8988                 | IT-Producing<br>Firms<br>1070        | IT-Producing<br>Firms<br>1070        |
| # obs<br># firms                              | -<br>10355<br>1566 | -<br>7650<br>1424 | -<br>-<br>8988<br>1501 | IT-Producing<br>Firms<br>1070<br>237 | IT-Producing<br>Firms<br>1070<br>237 |



#### **Robustness Checks**

| DV: Value-Added                 | 1        | 2        | 3         | 4         | 5         | 6        | 7        | 8         | 9         |
|---------------------------------|----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|
| $(VA_{it})$                     |          |          |           |           |           |          |          |           |           |
| Model                           | ABOND -  | BBOND -  | LevPet    | IPW OLS   | CEM OLS   | 2SLS     | 2SLS     | ABOND -   | ABOND -   |
|                                 | NAICS5   | NAICS5   | GMM       |           |           | (emp)    | (rev)    | IV (emp)  | IV (rev)  |
|                                 |          |          |           |           |           |          |          |           |           |
| IT Capital $(IT_{it})$          | 0.022*** | 0.022*** | 0.083***  | 0.051***  | 0.068***  | 0.035    | 0.067    | 0.023***  | 0.023***  |
|                                 | (0.005)  | (0.005)  | (0.007)   | (0.012)   | (0.014)   | (0.135)  | (0.132)  | (0.005)   | (0.005)   |
| Non-IT Capital $(K_{it})$       | -0.158   | -0.158   | 0.504***  | 0.230***  | 0.221***  | 0.248*** | 0.256*** | -0.181*   | -0.180*   |
|                                 | (0.103)  | (0.103)  | (0.099)   | (0.023)   | (0.017)   | (0.036)  | (0.036)  | (0.101)   | (0.101)   |
| Non-IT Labor $(L_{it})$         | 0.687*** | 0.687*** | 0.725***  | 0.754***  | 0.741***  | 0.706*** | 0.710*** | 0.695***  | 0.696***  |
|                                 | (0.057)  | (0.057)  | (0.021)   | (0.027)   | (0.023)   | (0.030)  | (0.030)  | (0.055)   | (0.055)   |
| non_pecuniary_OSS <sub>it</sub> | -0.001*  | -0.001*  | -0.009*** | -0.005*** | -0.007*** | -0.022   | -0.040   | -0.004*** | -0.004*** |
|                                 | (0.001)  | (0.001)  | (0.001)   | (0.001)   | (0.001)   | (0.070)  | (0.077)  | (0.001)   | (0.001)   |
| non_pecuniary_OSS <sub>it</sub> | 0.004**  | 0.004**  | 0.022***  | 0.013***  | 0.029***  | 0.170*** | 0.159*** | 0.010*    | 0.010*    |
| x IT-producer                   | (0.002)  | (0.002)  | (0.002)   | (0.003)   | (0.006)   | (0.038)  | (0.037)  | (0.006)   | (0.006)   |
| Constant                        | 0.369    | -0.613   | -         | 0.095     | 0.311*    | 0.255    | -0.048   | -0.597    | -0.982    |
|                                 | (0.693)  | (1.108)  | -         | (0.218)   | (0.188)   | (1.294)  | (1.274)  | (0.671)   | (0.634)   |
| Year FE?                        | Y        | Y        | Y         | Y         | Y         | Y        | Y        | Y         | Y         |
| Industry FE                     | NAICS5   | NAICS5   | NAICS2    | NAICS2    | NAICS2    | NAICS2   | NAICS2   | NAICS2    | NAICS2    |
| First Stage                     | -        | -        | -         | -         | -         | 52.83    | 52.79    | -         | -         |
| F-statistic                     |          |          |           |           |           |          |          |           |           |
| Cragg and Donald                | -        | -        | -         | -         | -         | 1.815    | 1.835    | -         | -         |
| Min. Eigenvalue                 |          |          |           |           |           |          |          |           |           |
| # obs                           | 7650     | 8988     | 10355     | 10355     | 6015      | 10355    | 10355    | 7650      | 7650      |
| # firms                         | 1424     | 1501     | 1566      | 1566      | 1414      | 1566     | 1566     | 1424      | 1424      |
| R^2                             |          |          |           | 0.932     | 0.910     | 0.809    | 0.823    |           |           |



- Smaller firms get more from using NP OSS
- Firms with fewer IT employees get more from using NP OSS
- No interaction effects with ITK, R&D, Local IT Authority

## Paper 3 – Free Ride vs. Contribute

- Profitability and success of firms is driven by competitive advantage
  - Resources or capabilities a firm has that it's competitors do not
  - How do public goods that all firms can use factor into competition?
- Some firms pay their own employees to contribute to the creation of public goods that their competitors can use for free. Why?

## USC Theory and Hypotheses

#### Learning by doing

- Knowledge is a public good (Stiglitz, 1999)
- Information is codified into knowledge via experience
- Learning by doing has important implications for growth
  - At the economy level (Arrow, 1962; Romer, 1989)
  - At the organization-level (Herriott, Levinthal, and March, 1985; Levitt and March, 1988)
- Transfer of knowledge via experience may be the reason firms exist (Huber, 1991; Kogut and Zander, 1992, 1996; Grant, 1996; Kogut, 2000)
- Integration of external knowledge can be improved via investing in absorptive capacity (Cohen and Levinthal, 1989, 1990)

## **USC** Theory and Hypotheses

#### Learning by Contributing

- Public physical goods are simple
  - Learning by doing is enough
- Public information goods are complex
  - Learning by doing (free-riding) is not enough
  - Learning by contributing allows a deeper understanding of how to use the good for productive purposes



- ↔  $VA_{it}$  = productive value-added output of firm *i* at time *t*
- ↔  $IT_{it}$  = IT expenditure
- $K_{it}$  = non-IT capital stock
- ↔  $L_{it}$  = non-IT labor
- $OSS_{it}$  = Number of OSS operating systems at the firm
- ✤ Post<sub>it</sub> = 1 after the firm (or it's match) contributes
- # Contributors = Number of contributors to Linux from firm this year
- # Changes = Number of lines contributed to Linux
- # Signoffs = Number of approvals of lines contributed to Linux



$$Y_{it} = K_{it}{}^{\alpha}L_{it}{}^{\beta}IT_{it}{}^{\gamma}A_{it}$$

 $\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma \ln IT_{it} + \varepsilon_{it}$ 

 $\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma_1 \ln IT_{it} + \gamma_2 \ln OSS_{it} + \varepsilon_{it}$ 

$$\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma_1 \ln IT_{it} + \gamma_2 \ln OSS_{it} + \gamma_3 Contrib_i + \gamma_4 Post_{it} + \gamma_5 Contrib_i * \ln OSS_{it} + \gamma_6 Contrib_i * Post_{it} + \gamma_7 \ln OSS_{it} * Post_{it} + \gamma_8 Contrib_i * \ln OSS_{it} * Post_{it} + \varepsilon_{it}$$
(4)  
$$\ln(VA_{it}) = \alpha \ln K_{it} + \beta \ln L_{it} + \gamma_1 \ln IT_{it} + \gamma_2 \ln OSS_{it} + \gamma_3 Contrib_i + \gamma_4 Post_{it} + \gamma_5 Contrib_i * \ln IT_{it} + \gamma_6 Contrib_i * Post_{it} + \gamma_7 \ln IT_{it} * Post_{it} + \gamma_8 Contrib_i * \ln IT_{it} * Post_{it} - \varepsilon_{it}$$
(5)

### **Results – Benefits of Contribution**

| DV: Value-Added<br>(VA <sub>it</sub> )                         | 1                 | 2                   | 3                   | 4                 | 5                     |
|----------------------------------------------------------------|-------------------|---------------------|---------------------|-------------------|-----------------------|
| (Contrib <sub>i</sub> *OSS <sub>it</sub> )                     | 0.004<br>(0.026)  | -0.061<br>(0.040)   | -0.016<br>(0.031)   | -0.036<br>(0.027) | -0.087***<br>(0.028)  |
| (Contrib <sub>i</sub> *Post <sub>it</sub> )                    | 0.059<br>(0.130)  | -0.402*<br>(0.229)  | -0.286<br>(0.207)   | -0.142<br>(0.172) | -0.316<br>(0.196)     |
| (OSS <sub>it</sub> *Post <sub>it</sub> )                       | -0.013<br>(0.022) | -0.060**<br>(0.027) | -0.026<br>(0.024)   | -0.034<br>(0.021) | -0.081***<br>(0.021)) |
| (Contrib <sub>i</sub> *OSS <sub>it</sub> *Post <sub>it</sub> ) |                   | 0.107**<br>(0.041)  | 0.066*<br>(0.034)   | 0.046*<br>(0.027) | 0.073**<br>(0.031)    |
| R&D Expense ( <i>RD<sub>it</sub></i> )                         |                   |                     | 0.322***<br>(0.060) |                   |                       |
| Standard Error                                                 | Clustered         | Clustered           | Clustered           | Clustered         | GMM                   |
| Robustness check                                               |                   |                     | R&D Control         | Firm FE           | Arellano-<br>Bond     |
| Ν                                                              | 681               | 681                 | 611                 | 681               | 604                   |
| <b>R</b> <sup>2</sup>                                          | 0.907             | 0.908               | 0.932               | 0.563             | -                     |

\*\*\*p<.01, \*\*p<.05, \*p<.1. All variables are the natural log of the underlying variable. All columns include controls for  $IT_{ip}$   $K_{ip}$   $L_{ip}$   $OSS_{ip}$  Contrib<sub>p</sub> Post<sub>ip</sub> and year as well as a constant not shown for space. The regressions include a lagged variable (not shown due to space constraints) for all variables related to the use of and contribution to OSS including *OSSit*, Postit, and any interaction variable including one of these two.

### **Results – Contribution Intensity**

| DV: Value-<br>Added <i>(VA<sub>it</sub>)</i>        | 1                         | 2                         | 3                    | 4                    | 5                     | 6                     |
|-----------------------------------------------------|---------------------------|---------------------------|----------------------|----------------------|-----------------------|-----------------------|
| Contribution<br>Intensity<br>(Contrib Int)          | -0.029*<br>(0.015)        | -0.022*<br>(0.012)        | -0.023*<br>(0.013)   | -0.020*<br>(0.010)   | -0.022*<br>(0.013)    | -0.018<br>(0.011)     |
| (Contrib_Int <sub>it</sub> *<br>OSS <sub>it</sub> ) | 0.004*<br>(0.002)         | 0.003**<br>(0.002)        | 0.003*<br>(0.002)    | 0.003**<br>(0.001)   | 0.003*<br>(0.002)     | 0.003*<br>(0.001)     |
| Measure of<br>Contribution                          | Number of<br>Contributors | Number of<br>Contributors | Number of<br>Changes | Number of<br>Changes | Number of<br>Signoffs | Number of<br>Signoffs |
| Intensity                                           |                           |                           |                      | C                    | C                     |                       |
| Intensity<br>Model Type                             | OLS                       | Firm FE                   | OLS                  | Firm FE              | OLS                   | Firm FE               |
| Intensity   Model Type   N                          | OLS<br>307                | Firm FE<br>307            | OLS<br>307           | Firm FE<br>307       | OLS<br>307            | Firm FE<br>307        |

\*\*\*p<.01, \*\*p<.05, \*p<.1. All variables are the natural log of the underlying variable. All regressions are OLS models and use clustered standard errors at the firm level. All columns include controls for  $IT_{ip}$   $K_{ip}$   $L_{ip}$   $OSS_{ip}$ , and year as well as a constant not shown for space. The regressions include a lagged variable (not shown due to space constraints) for all variables related to the use of and contribution to OSS including  $OSS_{ip}$ , and any interaction variable including one of these two.

## USC Results – Spillover to all IT

| DV: Value-Added (VA <sub>it</sub> )                              | 1                   | 2                   | 3                 | 4                  |
|------------------------------------------------------------------|---------------------|---------------------|-------------------|--------------------|
| (Contrib <sub>i</sub> * $OSS_{it}$ )                             |                     | -0.051<br>(0.045)   |                   |                    |
| (Contrib <sub>i</sub> *Post <sub>it</sub> )                      | -0.569*<br>(0.308)  | -0.651**<br>(0.290) | -0.488<br>(0.321) | -0.268<br>(0.307)  |
| $(OSS_{it} * Post_{it})$                                         |                     | -0.047<br>(0.032)   |                   |                    |
| (Contrib <sub>i</sub> * OSS <sub>it</sub> * Post <sub>it</sub> ) |                     | 0.099**<br>(0.046)  |                   |                    |
| (Contrib <sub>i</sub> * IT <sub>it</sub> )                       | -0.100<br>(0.076)   | -0.046<br>(0.079)   | -0.029<br>(0.073) | -0.070<br>(0.078)  |
| $(IT_{it} * Post_{it})$                                          | -0.113**<br>(0.049) | -0.067<br>(0.048)   | -0.065<br>(0.054) | -0.062*<br>(0.035) |
| (Contrib <sub>i</sub> * IT <sub>it</sub> * Post <sub>it</sub> )  | 0.159**<br>(0.073)  | 0.072<br>(0.076)    | 0.132*<br>(0.076) | 0.083<br>(0.070)   |
| R&D Expense <i>(RD<sub>it</sub>)</i>                             |                     |                     | 0.357<br>(0.064)  |                    |
| Robustness Check                                                 |                     |                     | R&D Control       | Firm FE            |
| Ν                                                                | 681                 | 681                 | 607               | 681                |
| <b>R</b> <sup>2</sup>                                            | 0.906               | 0.909               | 0.932             | 0.560              |



- Crowdsourced digital goods & digital dark matter are missed in GDP calculations
  - Apache alone accounts for between \$2 billion and \$12 billion that is missing from GDP

OSS has a positive impact on firm productivity

- For non-IT producing firms, it takes 1-6 years to occur
- Bigger effect for smaller firms
- Contributing to OSS leads to higher productivity from using OSS
  - Contributors gain 11% more productivity from using OSS than free-riding peers



## **The Digital Commons: Tragedy or Opportunity? The Effect of Crowdsourced Digital Goods on Economic Growth** Frank Nagle **Marshall School of Business** University of Southern California frank.nagle@marshall.usc.edu

Twitter: @frank\_nagle